
Evaluation for the NeurIPS Machine Unlearning Competition

Written by the organizers of the NeurIPS Unlearning Competition∗

August 2023

1 Introduction

In this document, we describe the evaluation procedure used in the NeurIPS Unlearning Competition. We
begin by introducing a formal but non-worst case notion for unlearning that is largely inspired by [Sekhari
et al., 2021, Gupta et al., 2021, Neel et al., 2021]. Next, we outline the procedure of defining an evaluation
metric for forget quality based on that definition. Finally, we describe how we define our final score that,
aside from forgetting quality, also takes into account model utility and efficiency.

Before we dive in, we would like to emphasize upfront that designing an evaluation metric for unlearning
is as much a research project as the unlearning problem is itself. Our understanding of strong unlearning
solutions evolves in tandem with our understanding of metrics to assess them. The best practices we adopt
will very likely evolve over future iterations of the challenge as we learn from the competition’s outcome.
Therefore, we would like to emphasize that, while we hope our proposed evaluation framework is an important
step forward for the community, we don’t claim that it is perfect. The goal of this competition is to engage
the community in discussions to understand how to improve both unlearning algorithms and evaluation
metrics. See also the Limitations section at the end of this document for more details.

2 Background: Differential Privacy

Our definition of unlearning relates to the semantics of Differential Privacy (DP) . Therefore, we first recap
key DP concepts, starting with the notion of example-level differential privacy (DP).

Definition 2.1. Example-level Differential Privacy. A training algorithm A : D → R is (ε, δ) example-
level DP if for all pairs of datasets D and D′ from D that differ by addition or removal of any single training
example and all output regions R ⊆ R:

Pr[A(D) ∈ R] ≤ eε Pr[A(D′) ∈ R] + δ.

For example, if using a neural network with d parameters, the output space R is the d-dimensional
Euclidean space in which the parameters live, and R can be any subset of it.

DP can be interpreted as a hypothesis test with the null hypothesis that A was trained on D and the
alternative hypothesis that A was trained on D′. False positives (type-I errors) occur when the null hypothesis
is true, but is rejected, while false negatives (type-II errors) occur when the alternative hypothesis is true,
but is rejected. Kairouz et al. [2015] characterized (ε, δ)-DP in terms of the false positive rate (FPR) and
false negative rate (FNR) achievable by an acceptance region. This characterization enables estimating the ε
privacy parameter at a fixed δ as:

ε̂ = max

{
log

1− δ − ˆFPR

ˆFNR
, log

1− δ − ˆFNR

ˆFPR

}
, (1)

∗If you have any questions, concerns, or feedback regarding this document, please direct them to the corresponding authors:
Eleni Triantafillou (etriantafillou@google.com) and Peter Kairouz (kairouz@google.com).

1

where ˆFPR and ˆFNR are estimates of the true FPR and FNR under an instantiated membership inference
attack∗ that can inspect the model trained with DP in a black- or white-box fashion and attempts to infer
whether the model was trained on D or D′ [Shokri et al., 2017, Jagielski et al., 2020]. We observe that
in order to obtain ˆFPR and ˆFNR, the attack should be ran on many models trained with the same DP
algorithm, some on D and others on D′. Moreover, if we would like to seek a high probability lower bound
on ε, and we would like this lower bound to be as large as possible (i.e. as representative as possible), then
we would need to do the following:

ε̂ = sup
attacks

max

{
log

1− δ − FPR

FNR
, log

1− δ − FNR

FPR

}
, (2)

where FPR (FNR) and FNR (FPR) are upper and lower bounds on FPR (FNR) and FNR (FPR), respectively,
within a desired confidence level, and the sup is taken over a family of attacks. See [Steinke et al., 2023,
Pillutla et al., 2023, Andrew et al., 2023, Nasr et al., 2023, 2021, Jagielski et al., 2020] for more details.

We now present a closely related notion, called group-level DP, which will be very useful when we present
the unlearning definition in the next section.

Definition 2.2. Group-level Differential privacy. A training algorithm A : D → R is (ε, δ, k) group-level
DP if for all pairs of datasets D and D′ from D that differ by addition or removal of up to k training examples
and all output regions R ⊆ R:

Pr[A(D) ∈ R] ≤ eε Pr[A(D′) ∈ R] + δ.

We note that the “group-level” DP notion differs from example-level DP in that it allows for the addition
or removal of up to k arbitrary training examples, as opposed to only one. Thus, group-level DP can be
stronger than example-level DP. Further, observe that group-level DP can also be interpreted as a binary
hypothesis test, although the adversary can now incorporate the fact that D and D′ differ by up to k training
examples when making a decision.

3 Defining Machine Unlearning

We are now ready to define machine unlearning using the same semantics as DP. As mentioned above, our
notion is largely inspired by [Sekhari et al., 2021, Gupta et al., 2021, Neel et al., 2021], although ours is a
weaker version.

First, we define the notion of a forget set S ⊆ D. This is the set of training examples that we want the
model trained on D to “forget”. Intuitively, an unlearning algorithm U(·) ingests A(D) (the model trained
on D using algorithm A), the forget set S, and possibly the dataset D, and produces a model that has
“forgotten” S. The notion of forgetting will be measured relative to running the training algorithm on D\S
(i.e. A(D\S)). This gives us the following mathematical definition, which draws inspiration from DP.

Definition 3.1. Machine Unlearning. For a fixed dataset D, forget set S ⊆ D, and a randomized
learning algorithm A, an unlearning algorithm U is (ε, δ)-unlearning with respect to (D,S,A) if for all regions
R ⊆ R, we have that

Pr[A(D\S) ∈ R] ≤ eε Pr[U(A(D), S,D) ∈ R] + δ,

and

Pr[U(A(D), S,D) ∈ R] ≤ eε Pr[A(D\S) ∈ R] + δ.

Intuitively, when ε and δ are very small, the above definition says that the distributions of A(D\S) (the
model retrained from scratch) and U(A(D), S,D) (the unlearned model) are nearly indistinguishable from
one another.

A few observations are in order.

∗There is a long line of important research on membership inference attacks in ML, including many papers that apply these
attacks to audit or estimate the ε of DP mechanisms. We apologize for not citing all the works in this space.

2

• Our definition is weaker than the one in [Sekhari et al., 2021, Gupta et al., 2021, Neel et al., 2021]
as follows: (a) we do not consider adversarial (worst-case) datasets D, and (b) we do not consider
adversarial (worst-case) forget sets S. In other words, our guarantee is restricted to a fixed dataset D
and forget set S.

• Our definition of unlearning is strictly weaker than (ε, δ, k) group-level DP. In other words, if A satisfies
(ε, δ, k) group-level DP, then for the identity unlearning function U , we automatically achieve (ε, δ)-
unlearning with respect to any pair (D,S) as long as |S| ≤ k. Thus, DP may be an overkill for accuracy
if all we need is unlearning.

• As discussed in the previous section for DP, we can estimate the ε privacy parameter at a fixed δ using
Equation (1); this time using estimates of FPR and FNR obtained for the appropriate hypothesis test for
the unlearning case (i.e., the adversary can observe either the output of an unlearning algorithm or the
output of an algorithm that retrains the model from scratch). For efficiency purposes, our competition
will primarily use empirical estimates of FPR and FNR instead of high probability lower/upper bounds
on these quantities (as done in Equation (2)). To ensure fairness in scoring, we might use high probability
lower/upper bounds on FPR and FNR for the top submissions.

4 Defining and Measuring Forgetting Quality

We now discuss how we can use the above definition of unlearning to define an evaluation metric for unlearning
algorithms.

Overview At a high level, we would like to measure how different two distributions are: the distribution
obtained by the “oracle” unlearning algorithm of retraining from scratch (“retrain”) without the forget set S,
i.e. A(D\S), and the distribution obtained by a given unlearning algorithm U , i.e. U(A(D), S,D), where A
is a fixed training algorithm. We note that each of those is a distribution in the weight space, rather than a
particular point, because randomness in the form of the initialization (in the case of retraining from scratch),

FNR FPR

ℙ[f(A(D\S))] ℙ[f(U(A(D),S,D))]

example (linear) decision boundary based on f(.)
("unlearned" predicted on arrow/positive side)

D\S

D

S

Figure 1: An illustration of FNR and FPR for a hypothesis test based on an example (linear) decision
boundary and summary statistic, f(·). The plot depicts the densities of the summary statistic, computed on
A(D \ S) (i.e., on the output of the learning algorithm when training on the retain-set D \ S, alone), and
on U(A(D), S,D) (i.e., on the output of the unlearning procedure, U(.), acting on the classifier learned on
all data, A(D), and the forget set, S). The unlearning level (ε, δ) achieved by the unlearning procedure can
be estimated from the FNR and FPR of an optimal hypothesis test via Definition 3.1. Any choice for a
hypothesis test can be interpreted as an attack, aiming to distinguish the learned and unlearned classifiers.
Note that optimal hypothesis tests take the form of likelihood ratio tests, but any attack offers an estimate.

3

and the order in which data points appear in mini-batches (in both cases), may affect the resulting weights
obtained by each procedure.

There are many different choices of attacks for separating two distributions. One could consider white-box
attacks that operate on (estimates of) the two distributions in weight-space; though a difficulty inherent in
that setup is the large dimensionality of the weight space. For ease of exposition in this document (and for
the initial version for this competition), we consider black-box attacks that instead operate on (distributions
of) outputs produced by retrained and unlearned models when receiving examples from the forget set S.
For each example in the forget set, we run a number of attacks, each producing an estimate of FPR and
FNR, and we keep the worst-case attack, from the perspective of the unlearning algorithm, i.e. the one that
best separates the two distributions. We then use the estimated FPR and FNR of that worst-case attack to
compute that example’s ε estimate. We finally aggregate ε’s across forget-set examples, to get an estimate of
overall “forgetting quality”.

Note that while one could in principle compute a single estimate of ε by comparing distributions of
(unlearned and retrained) model outputs across forget set examples, we decided to compute one ε per example
and then aggregate those ε values, as discussed below. The reason for this is that, as also discussed in [Carlini
et al., 2022], different examples have different levels of “difficulty”, causing the outputs of retrained and
unlearned models to have different properties / take values in different ranges, which in turn makes it hard to
reliably compare distributions of outputs of models that have been obtained by different examples.

Computing per-example ε’s Let R and U denote the distributions of retrained and unlearned models,
respectively (as noted above, these are distributions in weight space, obtained by training / unlearning
with different random seeds). Further, for a particular forget set example s ∈ S, let Rs and Us denote the
distributions of (scalar) outputs of retrained and unlearned models, respectively, when receiving s as input.

We estimate Rs and Us empirically by running retraining and unlearning N times each (with different
random seeds) and compute two sets: Rs = {f(R1(s)), . . . f(RN (s))} and Us = {f(U1(s)), . . . f(UN (s))},
where Ri and Ui denote the i-th retrained and the i-th unlearned model, respectively, M(s) yields the outputs
obtained by feeding example s into model M , and f is a function that transforms those outputs into a scalar
(the details of which we will reveal after the competition ends). Our evaluation metric is based on measuring
how different the distributions of Rs and Us are, for the different forget set examples s.

To that end, we define different “decision rules” (“attacks”), each of which makes a prediction about
which of the two distributions (Rs or Us) a particular sample x (with x ∈ Rs ∪ Us) originates from. Each
decision rule therefore yields a particular FPR and FNR (we will reveal the details of our decision rules after
the competition ends). Intuitively, if a decision rule exists that can separate the two distributions well, then
the given unlearning algorithm is not a good one, according to this metric. We therefore pick the decision
rule that best separates the two distributions (i.e. the “worst-case” decision rule, from the perspective of
the unlearning algorithm), and we use its FPR and FNR to compute the ε value for the particular forget
example s, using Equation 1.

We show pseudocode for computing the ε value for a specific example in Algorithm 1. A few notes:

• If a particular attack fully separates the two distributions, we set the ε value for that attack to inf. We
set this manually rather than using Equation 1 to avoid numerical issues.

• We chose to discard an attack if exactly one of its FPR and FNR is 0 (if both FPR and FNR are
0, we are in the “perfect separation” case covered above). This is because we hypothesize (based on
empirical evidence) that such a situation is an artifact of the small number of samples we have from
each distribution (we set N = 512); a choice that we are forced to make due to computational efficiency
requirements.

Intuitively, εs, the ε value for a particular example s, measures the privacy degree, or the degree of
indistinguishability between the distributions of the outputs of retrained and unlearned models for example s,
where lower ε indicates better privacy / higher indistinguishability.

Aggregating per-example ε’s Ultimately, we want a single estimate of an unlearning algorithm’s “for-
getting quality”, which is an aggregation of the per-example ε’s produced by that unlearning algorithm. To

4

Algorithm 1 This algorithm computes an example’s ε from the FPRs and FNRs obtained by carrying out m
attacks. Each of these attacks aims to distinguish the unlearned and retrained distributions of (transformed)
outputs obtained from passing that example into N unlearned and N retrained models.

Require: FPR, FNR: two lists of lengthm each, storing the false positive and false negative rates (respectively)
from running a collection of m attacks on the outputs of N unlearned and N retrained models, for a specific
forget example.

Require: nan-max: a function that takes as input a list and returns the max of its elements, discarding any
that are nan.

Require: δ: a float.
i← 0
per-attack-ε← []
while i ≤ m do

if FPR[i] = 0 and FNR[i] = 0 then . This attack perfectly separates the two distributions.
per-attack-ε← per-attack-ε+ [inf]

else if FPR[i] = 0 or FNR[i] = 0 then . Discard attack if exactly one of FPR[i] or FNR[i] is 0.
pass

else . Compute this attack’s ε via Equation 1
per-attack-ε1 ← log(1− δ − FPR[i])− log(FNR[i]))
per-attack-ε2 ← log(1− δ − FNR[i])− log(FPR[i]))
per-attack-ε← per-attack-ε+ [nan-max([per-attack-ε1,per-attack-ε2])}]

ε← nan-max(per-attack-ε) . The ε for this example is that of the strongest attack
return ε

that end, we define a scoring function H that assigns a number of “points” to each example, based on that
example’s ε, and we aggregate by averaging the per-example scores. Specifically:

H(s) =
2

2n(s)
.

where n is a function that takes as input a forget example s and maps it to a “bin index” (an integer in the
range [1, B], where B is the total number of bins), based on its εs. Bins with smaller indices are better bins,
to which better (smaller) εs values get assigned. We set the width of each bin to 0.5 and the total range of ε
values we consider is [0, 6.5), so B = 13. This is because we set N = 512, and with that N , we can’t observe
a ε beyond that range (where N is the number of models from each of the two distributions, retrained and
unlearned, as discussed above).

So, for example, n(s) is 1 if εs is in the first bin, i.e. εs ∈ [0, 0.5), n(s) is 2 if εs is in the second bin, i.e.
εs ∈ [0.5, 1), and so on. For illustration, see below the associated H value that a forget example s would
receive depending on which bin its εs falls in (showing only the first few bins for illustration).

H(s) =

1 0.0 ≤ εs < 0.5
0.5 0.5 ≤ εs < 1.0
0.25 1.0 ≤ εs < 1.5
0.125 1.5 ≤ εs < 2.0
. . .

Note that H(s) assigns higher points for lower ε (recall that the smaller the ε for an example, the more
indistinguishable the retrained and unlearned distributions are for that example, which is indicative of
successful unlearning). †

†We considered several other ways of aggregating across per-example ε values. An alternative idea was returning the maximum
ε across forget set examples, but we worried that that would give too pessimistic an estimate and won’t be able to distinguish
well between different unlearning algorithms (while many may be similar in the worst-case, their distributions of ε values over
examples might be different). Computing quantiles over ε values would also be possible, but we decided that the current proposal
is a more granular way of comparing unlearing algorithms to one another. We hope that future iterations of our evaluation
protocol will improve upon this choice.

5

Finally, we define the forgetting quality for a given unlearning algorithm as the average score over the
examples of the forget set:

F =
1

|S|
∑
s∈S
H(s).

5 Overall Scoring: Forgetting Quality, Efficiency and Utility

A good unlearning algorithm must naturally ensure high forget quality while being frugal in terms of resource
usage (efficiency) and not damaging model utility. Hence, in this section, we discuss how we combine forgetting
quality, as defined in the previous section, with 1) model utility and 2) efficiency.

Computing model utility We compute the utility of an unlearning algorithm via the accuracy of unlearned
models on the “retain set” D\S and a held-out test set T . Concretely, we compute the average Retain
Accuracy (RA) and Test Accuracy (TA) as follows, where the average is taken over a set O of models:

RA(O) =
1

|O|
∑

i∈1,...,|O|

Acc(Oi, D\S), TA(O) =
1

|O|
∑

i∈1,...,|O|

Acc(Oi, T),

where Acc(M,D) denotes the accuracy of model M on dataset D.
For convenience, let us define:

RAU = RA({U1, . . . UN}).
TAU = TA({U1, . . . UN}).
RAR = RA({R1, . . . RN}).
TAR = TA({R1, . . . RN}).

where RAU and TAU are the estimates of the retain and test accuracy, respectively, of unlearned models
and similarly, RAR and TAR are the estimates of the retain and test accuracy, respectively, for the ideal
unlearning algorithm of retraining. We consider that an unlearning algorithm has good utility when RAU

and TAU are close to their RAR and TAR counterparts.

Combining forget quality, utility and efficiency First, to take efficiency into account, we reject
unlearning algorithms that run slower than a pre-decided hard threshold (in terms of seconds). This hard
threshold is chosen to be a small percentage (about 20%) of the time that it takes to run retrain-from-scratch.
The rationale behind this choice is that, to justify incurring the cost of unlearning (which will unavoidably
have suboptimal forget quality in general), running unlearning must be significantly faster than retraining.

Then, for unlearning algorithms that pass the efficiency cut-off, we compute their final score as follows
(where higher is better):

F × RAU

RAR
× TAU

TAR
.

Intuitively, the above formula adjusts the forgetting quality F based on utility, by penalizing an unlearning
algorithm if either its retain or test (average) accuracy is smaller than the corresponding average accuracy of
retraining. This score rewards unlearning algorithms that yield both high forgetting quality as well as good
utility.

6 Experimental Setup

Dataset details and forget set split We use a dataset of natural images of people’s faces. Each image
is labelled with an age group (there are 10 total classes / age groups). We split the dataset into a training,
validation and test set. We further split the training set into a retain set and a forget set. When doing so, we
take care that no subject’s images are split between the retain and the forget set; that is, each subject is
placed entirely in either the retain set or the forget set. The size of the forget set is roughly 2% of the size of
the training set. In Figure 2, we show the class (age group) distribution of the different sets.

6

(a) Train, validation and test histograms (b) Retain and forget histograms

Figure 2: Histograms of age groups for different sets. As can be seen, the distribution across classes / age
groups is similar across the train, validation and test sets. There is a lot of class imbalance: class 0 is by far
the most common. Note too that, while the retain set follows a similar distribution as the training set, the
forget set contains examples from only the first two classes, with the vast majority belonging to class 0.

Training details The “original model” we consider is a ResNet-18 classifier, trained for 30 epochs on the
training set to predict the age group associated with each image of a person’s face. It is trained with class
weights, to deal with class imbalance (where the loss value of an example is adjusted based on how frequent
that example’s class label is). We use no data augmentation. The original model obtains 98.98% accuracy on
the training set and 96.43% on the test set.

Public and private leaderboards The results displayed on the public leaderboard will be obtained using
the train / valid / test / retain / forget splits (and corresponding original model) mentioned above, whose
class distribution is shown in Figure 2. However, we will have a second split (following the same properties
as the one described above, but a different random seed) that we will use to declare final winners, using a
private leaderboard. This is common practice in competitions and the rationale is to prevent “overfitting” to
the particular setup for which feedback is provided on the leaderboard.

7 Disclaimer and Limitations

As mentioned, the key driving motivation for this competition is to engage the community in investigations and
discussions that will shed light and push the envelope in this very important and nascent area. Pragmatically
and by design, this entails deepening our understanding on how to design and implement better unlearning
algorithms, as well as how to design appropriate metrics for their evaluation. The evaluation protocol of the
challenge has been implemented with a high level of care, combining expertise from key areas such as deep
learning, unlearning algorithms, differential privacy, etc. Our proposed evaluation metric aims to (i) align key
concepts from DP with machine unlearning evaluation for forget quality, (ii) strike a balance between the
ability of the metric for evaluating forget quality and its utility and efficiency, and (iii) for practical reasons
(owing to this being a Kaggle-hosted competition), combine forget quality, model utility, and unlearning
algorithm efficiency into a single score. As a result, no guarantees can be provided by the organizers that
our evaluation metric is flawless, nor that the results of the challenge will be indicative of the fitness of the
algorithms to perform unlearning in other settings.

Specifically, assessing and quantifying forgetting quality of an unlearning algorithm is unavoidably fraught
with formidable challenges: formally defining measures for forgetting quality, as well as reliably estimating
those in practice are both open research problems. Notably, reliably measuring indistinguishability between
distributions is very challenging to do in a computationally-efficient manner. We believe that these are
important areas for future work and hope that our proposed approach inspires further research in this

7

area. To gain a clearer understanding of the properties of our proposed metric, in our post-competition
analyses we may investigate how it correlates with different metrics used in the literature for forgetting quality.
Admittedly, we chose to use a relatively smaller-than-desired number of samples from each distribution.
This was done in order to avoid impractically-long running times required to score each submission to the
competition. However, to mitigate the noise and limitations of the above, we may also choose to run the top
5 submissions with a substantially larger number of models, after the competition ends.

Further, our procedure for combining forgetting quality with utility and efficiency is also unavoidably lossy
(as this tends to lose key information about the performance of an algorithm in a specific area of interest
(e.g., in test or retain accuracy, or in forget quality): it is not possible to produce a single score that fully
captures all of this information (note that this is common in evaluating problems with multiple objectives
/ desiderata and isn’t unique to our competition). To mitigate this, in our post-competition analyses and
subsequent iterations of this competition, we may report separately on the performance of algorithms across
these combined sub-metrics and may even design alternative ways to better understand how well different
algorithms deal with trade-offs like that between forgetting quality and efficiency, and that between forgetting
quality and utility.

Finally, unlearning is a young area of research and there are many aspects of the problem that are left for
future exploration. For example, an interesting scenario that our setup disallows is the ability to modify the
original model training in order to produce trained models that are more amenable to unlearning. Other
interesting investigations involve understanding the ability of different algorithms to unlearn different forget
sets (both in terms of size and composition), to investigate the effect of different pre-training algorithms,
architectures, class imbalance and data augmentation, to name a few. Our competition unavoidably limits the
scope to studying a particular scenario (dataset / architecture / forget set, etc). We also limit to considering
only one value for δ, whereas one could consider a trade-off curve for ε and δ values. To mitigate these
limitations, in our post-competition analyses we may run top-performing unlearning algorithms in different
settings and consider different scenarios in follow-up iterations of the unlearning competition.

8 Acknowledgements

We thank Jamie Hayes and Sewoong Oh for insightful discussions and for their valuable feedback and
suggestions on this document.

References

G. Andrew, P. Kairouz, S. Oh, A. Oprea, H. B. McMahan, and V. Suriyakumar. One-shot empirical privacy
estimation for federated learning. arXiv preprint arXiv:2302.03098, 2023.

N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer. Membership inference attacks from first
principles. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1897–1914. IEEE, 2022.

V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites. Adaptive machine unlearning.
Advances in Neural Information Processing Systems, 34:16319–16330, 2021.

M. Jagielski, J. Ullman, and A. Oprea. Auditing differentially private machine learning: How private is
private sgd? Advances in Neural Information Processing Systems, 33:22205–22216, 2020.

P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for differential privacy. In International
conference on machine learning, pages 1376–1385. PMLR, 2015.

M. Nasr, S. Songi, A. Thakurta, N. Papernot, and N. Carlin. Adversary instantiation: Lower bounds for
differentially private machine learning. In 2021 IEEE Symposium on security and privacy (SP), pages
866–882. IEEE, 2021.

M. Nasr, J. Hayes, T. Steinke, B. Balle, F. Tramèr, M. Jagielski, N. Carlini, and A. Terzis. Tight auditing of
differentially private machine learning. arXiv preprint arXiv:2302.07956, 2023.

8

S. Neel, A. Roth, and S. Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pages 931–962. PMLR, 2021.

K. Pillutla, G. Andrew, P. Kairouz, H. B. McMahan, A. Oprea, and S. Oh. Unleashing the power of
randomization in auditing differentially private ml. arXiv preprint arXiv:2305.18447, 2023.

A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh. Remember what you want to forget: Algorithms for
machine unlearning. Advances in Neural Information Processing Systems, 34:18075–18086, 2021.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning
models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18. IEEE, 2017.

T. Steinke, M. Nasr, and M. Jagielski. Privacy auditing with one (1) training run. arXiv preprint
arXiv:2305.08846, 2023.

9

	Introduction
	Background: Differential Privacy
	Defining Machine Unlearning
	Defining and Measuring Forgetting Quality
	Overall Scoring: Forgetting Quality, Efficiency and Utility
	Experimental Setup
	Disclaimer and Limitations
	Acknowledgements

